使用有限元方法求解相场断裂模型的主要软件及开源代码

 

Notable software packages and available codes that implement the finite element method for solving phase-field fracture (PFF) models Software Language interface Price Avai...

Notable software packages and available codes that implement the finite element method for solving phase-field fracture (PFF) models

Software Language interface Price Available codes for PFF
MATLAB MATLAB Commercial Biner1
mef90/vDef2 Fortran Free Bourdin3
JIVE4 C++ Free Nguyen5
deal.II6 C++ Free Heister7
FEniCS8 C++ & Python Free Ratna9, Martínez-Pañeda10
COMSOL MATLAB Commercial Zhou et al.11, Wu12
ABAQUS Fortran Commercial Molnár13, Fang et al.14, Seles et al.15, Martínez-Pañeda16, Wu17

References

  1. Biner, S. Bulent. Programming phase-field modeling. Springer International Publishing, 2017. 

  2. Bourdin, kumiori, cmaurini, et al. bourdin/mef90: Full rewrite of the assembly routines leveraging OO features of F2008. Zenodo, 2020. 

  3. Bourdin, B., Francfort, G., and Marigo, J.-J. (2000). Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids, 48(4):797–826.

    Bourdin, B. (2007). Numerical implementation of a variational formulation of quasi-static brittle fracture. Interfaces Free Bound., 9:411–430.

    Bourdin, B., Francfort, G., and Marigo, J.-J. (2008). The variational approach to fracture. J. Elasticity, 91(1-3):1–148. 

  4. Nguyen-Thanh, Chi, et al. Jive: an open source, research-oriented C++ library for solving partial differential equations. Advances in Engineering Software 150 (2020): 102925. 

  5. Wu, Jian-Ying, et al. Computational modeling of localized failure in solids: XFEM vs PF-CZM. Computer Methods in Applied Mechanics and Engineering 345 (2019): 618-643.

    MANDAL T K, NGUYEN V P, HEIDARPOUR A. Phase field and gradient enhanced damage models for quasi-brittle failure: A numerical comparative study. Engineering Fracture Mechanics, 2019, 207: 48-67.

    MANDAL T K, NGUYEN V P, WU J Y. Length scale and mesh bias sensitivity of phase-field models for brittle and cohesive fracture. Engineering Fracture Mechanics, 2019, 217: 106532.

    MANDAL T K, NGUYEN V P, WU J Y. Comparative study of phase-field damage models for hydrogen assisted cracking. Theoretical and Applied Fracture Mechanics, 2021, 111: 102840. 

  6. ARNDT D, BANGERTH W, BLAIS B, et al. The deal.II library, version 9.2. Journal of Numerical Mathematics, 2020, 28(3): 131-146. 

  7. HEISTER T, WHEELER M F, WICK T. A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 466-495.

    HEISTER T, WICK T. Parallel solution, adaptivity, computational convergence, and open-source code of 2d and 3d pressurized phase-field fracture problems. PAMM, 2018, 18(1). 

  8. ALNÆS M S, BLECHTA J, HAKE J, et al. The fenics project version 1.5. Archive of Numerical Software, 2015, 3(100). 

  9. HIRSHIKESH, NATARAJAN S, ANNABATTULA R K. A FEniCS implementation of the phase field method for quasi-static brittle fracture. Frontiers of Structural and Civil Engineering, 2018, 13(2): 380-396. 

  10. HIRSHIKESH, NATARAJAN S, ANNABATTULA R K, et al. Phase field modelling of crack propagation in functionally graded materials. Composites Part B: Engineering, 2019, 169: 239-248. 

  11. ZHOU S, RABCZUK T, ZHUANG X. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 2018, 122: 31-49. 

  12. WU J Y, CHEN W X. Phase-field modeling of electromechanical fracture in piezoelectric solids: Analytical results and numerical simulations. Computer Methods in Applied Mechanics and Engineering, 2021. 

  13. MOLNÁR G, GRAVOUIL A. 2d and 3d abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elements in Analysis and Design, 2017, 130: 27-38.

    MOLNÁR G, GRAVOUIL A, SEGHIR R, et al. An open-source abaqus implementation of the phase-field method to study the effect of plasticity on the instantaneous fracture toughness in dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 113004. 

  14. FANG J, WU C, RABCZUK T, et al. Phase field fracture in elasto-plastic solids: Abaqus implementation and case studies. Theoretical and Applied Fracture Mechanics, 2019, 103: 102252. 

  15. SELEŠ K, LESIČAR T, TONKOVIĆ Z, et al. A residual control staggered solution scheme for the phase-field modeling of brittle fracture. Engineering Fracture Mechanics, 2019, 205: 370-386. 

  16. KRISTENSEN P K, MARTÍNEZ-PAÑEDA E. Phase field fracture modelling using quasi-newton methods and a new adaptive step scheme. Theoretical and Applied Fracture Mechanics, 2020, 107: 102446.

    MARTÍNEZ-PAÑEDA E, GOLAHMAR A, NIORDSON C F. A phase field formulation for hydrogen assisted cracking. Computer Methods in Applied Mechanics and Engineering, 2018, 342: 742-761.

    CUI C, MA R, MARTÍNEZ-PAÑEDA E. A phase field formulation for dissolutiondriven stress corrosion cracking. Journal of the Mechanics and Physics of Solids, 2021, 147: 104254.

    NAVIDTEHRANI Y, BETEGÓN C, MARTÍNEZ-PAÑEDA E. A unified abaqus implementation of the phase field fracture method using only a user material subroutine. Materials, 2021, 14(8): 1913.

    NAVIDTEHRANI Y, BETEGÓN C, MARTÍNEZ-PAÑEDA E. A simple and robust abaqus implementation of the phase field fracture method. Applications in Engineering Science, 2021, 6: 100050. 

  17. WU J Y, HUANG Y, NGUYEN V P. On the BFGS monolithic algorithm for the unified phase field damage theory. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112704.

    WU J Y, HUANG Y. Comprehensive implementations of phase-field damage models in abaqus. Theoretical and Applied Fracture Mechanics, 2020, 106: 102440.